Attribution and Accountability: Voting for Roads in Ghana

Robin Harding
University of Rochester
robin.harding@rochester.edu

August 2014

I am grateful to David Stasavage, Joshua Tucker, Leonard Wantchekon, Oeindrila Dube, Alex Scacco, Kate Baldwin, Nahomi Ichino, Karen Ferree, Staffan Lindberg and Beatriz Magaloni for comments on previous drafts of this paper. The research for this paper was supported by a Doctoral Dissertation Improvement Grant from the National Science Foundation, and by the Robert Holmes Award for African Scholarship from Africa House at New York University. I would like to thank many individuals at the Electoral Commission of Ghana, the Ghana Highways Authority, the Ghana Statistical Service, and the Center for Remote Sensing and Geographic Information Systems at the University of Ghana, Legon, for generous assistance during six months of field research in Ghana in 2010.
Abstract

Do voters in Africa use elections to hold governments accountable for their performance in office? In contexts of limited information and weak state capacity it can be hard for citizens to attribute the provision of public goods and services to political action. As a result, voters often have little information about government performance on which to condition their electoral support. Such contexts are frequently characterized by clientelism or ethnic politics, and there is a widespread impression that African elections are little more than contests in corruption or ethnic mobilization. Using a unique panel dataset containing electoral returns and detailed information on road conditions throughout Ghana, I provide robust evidence that when a public good can be attributed to political action, as is the case with roads in Ghana, electoral support is affected by the provision of that good. In addition, I use data on a variety of education inputs to test the claim that votes are only conditioned on attributable outcomes.
1 Introduction

The 2010 yam season brought a bumper harvest in Yendi, in Ghana’s Northern Region, resulting in one of the highest yields ever. But by the end of November, instead of selling in the markets of southern cities such as Ho, Koforidua, and Accra, the yam was still stuck in the north, rotting by the roadside. Already in a poor state, the onset of the rains had left the roads flooded, littered with potholes, and impossible for trucks and lorries to traverse. With no way to transport their goods to market, the farmers embarked on mass demonstrations. Soon they had been joined by citizens from many other walks of life. Wielding placards displaying slogans such as ‘No Road, No Vote’ and ‘Where is the better Ghana?’, the protestors demanded that the government repair the road before the 2012 general elections, or risk losing their votes.1

This short narrative presents an unusual but powerful image; the more common impression of African elections is that votes are exchanged for cash or gifts, or given freely in accordance with ethnic loyalties, not that they are used to hold politicians accountable for their performance in providing public goods and services. Indeed, a senior figure from one of Ghana’s two major political parties painted a much more typical picture when he said, “there is a high phenomenon of bribery and corruption in African politics ... and the reason is that a very large majority of those who are going to vote have no idea why they are even voting. Are you voting because you don’t have electricity, you don’t have water, your needs are not being satisfied by the particular government in power? [No,] you are voting because on the day of voting somebody offers you 10,000 cedis [about US$1] – you just walk in and vote and come out, without thinking about the long term effects of voting for a particular party on the development of your community.”2

These contrasting images raise an important question: do voters in Africa use elections to hold governments accountable for their performance in office? A positive answer would counter the prevailing wisdom, that African elections are solely about clientelism and ethnic voting. As such,

1 “Northern chiefs unhappy over poor roads”, Ghanaian Chronicle, 6 December 2010; “Yam Glut - Bumper Harvest, Poor Roads”, Daily Graphic, 30 November 2010.
2 Interview, Ashanti Region, July 2007.
it would add weight to a growing body of work which argues that performance evaluation does have a role in determining voters’ choices in Africa. This matters because if citizens in Africa do use elections to hold governments accountable for their performance in providing goods and services, then competitive elections are generating the accountability mechanisms that underpin the potential developmental benefits of democracy. This research contributes to that body of work by providing robust, systematic evidence that voters in a single African country do use elections, at least in part, to hold the government accountable for its performance in providing public goods. Specifically, I show that vote shares in Ghana are significantly affected by changes to the condition of local roads.

In the strictest sense local roads are arguably quasi-public goods rather than pure public goods, since excludability by location is possible. By the same measure though, many other things that are also commonly viewed as public goods, such as education and law enforcement, are likewise better classified as quasi-public goods. But while such a distinction may be useful to note, it is not critical to the question this research asks about the nature of the link between voters and politicians, i.e. who is being held accountable? Instead, more important than whether the goods in question are purely public is whether or not the provision of these goods is clientelistic, and this distinction depends more on how the good is distributed than on the precise nature of the good itself.

Stokes et al. (2013) propose a useful conceptual scheme of distributive politics that differentiates primarily between programmatic and nonprogrammatic forms of distribution, wherein the former requires criteria for distribution that are both formal and public, and that actually shape the distribution of resources. By this scheme, clientelism represents a subset of nonprogrammatic politics for which the key aspect is contingency – under clientelism, an individual’s access to resources is contingent on the individual’s provision of political support.³ This is critical for the nature of the link between voters and politicians in democracy, because contingency of this type undermines or even reverses democratic accountability; where the receipt of benefits is contingent on political support, voters are being held accountable by politicians.

³Although clientelism can and has been defined in a variety of ways, the notion of contingency is common to all definitions. See Hicken (2011) for a useful review.
The purpose of this research is to investigate whether the opposite is true, that votes are being used to hold politicians accountable for their performance in providing some type of good or service. Therefore in order to do so it is necessary to investigate the relationship between votes and goods whose distribution is not clientelistic. As I discuss in Section 3.2, this is true of road maintenance in Ghana, because the budget for road maintenance is distributed according to formal rules, details of which are publicly available. However, if voters are to effectively condition their votes on public goods, they must be able to attribute the provision of those goods directly to the actions of the politicians for whom they are voting. This means that to assess the impact of public goods on votes, it is also necessary to look at goods that can be attributed to political action, and again this is true of roads in Ghana. Therefore, taking road maintenance in Ghana to be an attributable good whose distribution is not clientelistic, I use an original dataset combining electoral outcomes at the polling station level with precise, localized information on changes to road conditions to investigate whether roads affect votes in Ghana.

The dataset contains electoral returns collected from a random sample of over 3,000 polling stations, located within more than sixty constituencies throughout Ghana, from the 2004 and 2008 Presidential elections. These returns were then geographically referenced to data on changes to the condition of roads in the precise localities around the polling stations, for the years between the 2004 and 2008 elections. The temporal and spatial character of the data allows me to overcome problems of potentially confounding unobservable factors by estimating a first difference model within very localized areas (of on average less than a few thousand voters). Doing so enables me to separate the effect of road conditions on vote shares from any time invariant characteristics of local areas that could possibly confound this relationship. Furthermore, including district-specific time trends ensures that this relationship is also not confounded by unobserved time varying factors. Therefore this identification strategy provides a high degree of confidence that the implied relationship between roads and votes is not spurious – voting behavior in Ghana is significantly influenced by local road conditions.

I present a series of results to demonstrate the robustness of these findings, including estimates
which show that the relationship between roads and votes holds when a measure of changes to wealth is included, and estimates that deal with potential bias caused by outliers. In addition, I use data on a variety of education inputs from the annual Ghanaian schools census to undertake a falsification test of the assertion that votes can only be conditioned on attributable policy outcomes. As expected, only education inputs that can be attributed to executive action are significantly related to presidential vote shares.

The primary contribution of this research is to provide strong, tangible evidence of voters in an African country, in this case Ghana, using elections to hold politicians accountable for their performance in office. This should not be taken to mean that ethnicity and clientelism play no part in determining electoral outcomes in Ghana, but rather that these are not the only determinants of voter choice therein. Providing robust evidence identifying the existence of a link between votes and public goods is an important contribution to the literature on electoral politics in Africa that has begun to argue that voting in African democracies is based at least in part on evaluations of government performance. These findings matter because if citizens in Africa do vote on the basis of public goods, competitive elections are generating the accountability mechanisms that underpin the potential developmental benefits of democracy.

The second important contribution of this research follows from the recognition that attribution matters. The claim that this paper makes is that voters in Ghana are able to hold the government accountable for road conditions, because they can attribute road conditions to the executive branch. The seminal work by Powell and Whitten (1993) recognized that the ability of voters to attribute outcomes to political action can vary across institutional contexts. Following that work, this research represents one of a small group of studies which acknowledge that the extent to which voters use elections to hold politicians accountable may vary over policy outcomes within a given institutional context, due to the attributability of the outcomes themselves. This is important because it highlights the fact that the conclusions researchers draw are likely to be affected by the outcomes under investigation. The effect of roads on votes in Ghana that this research identifies might well generalize to other countries in which roads are similarly attributable. The more
important conclusion to draw, however, is that researchers should consider which goods can be attributed to political action, and whose actions they can be attributed to, in the particular case being investigated. More generally, this suggests a way forward for future research in this area, by highlighting the importance of considering the nature of both the particular context in which elections take place, and of the policy outcomes under investigation.

As well as advancing our understanding of electoral politics in Africa, the insights about attribution speak to the literature on the operation of democratic accountability more generally. As such, given what is known about how accountability affects the provision of public goods and services, this work also contributes to the literature on the politics of development. In the following section I discuss the relationship between information, attribution, and accountability, and I provide details about the context of democracy and roads in Ghana in Section 3. The empirical strategy is explained in Section 4, results are presented in Section 5, and Section 6 concludes.

2 Attribution and Accountability in Africa

2.1 Information, Attribution, and Accountability

Democratic elections provide structures of accountability, but the extent to which this accountability can be realized varies by context. One critical contextual factor is the availability of information, because when voters are more informed they can evaluate the government’s performance more effectively (Besley and Burgess 2002, Majumdar, Mani and Mukand 2004). Consequently, access to information is expected to affect a variety of outcomes, and numerous empirical studies have demonstrated the impact of information on the distribution of public spending, levels of corruption, and capture of rents by local governments, as well as individual level indicators of development such as school enrollment, student test scores, and child mortality.4

Building on the recognition that information affects accountability, Mani and Mukand (2007) argue that this may vary across public goods, because effort exerted for the provision of some goods is more verifiable than for others. Therefore information matters because it determines whether voters can attribute outcomes to the actions of politicians. When voters have good information about who is responsible for the policy outcomes they experience, they can use elections to hold the relevant politicians accountable for their performance in delivering these outcomes.

A useful example of an outcome that can be attributed in this way is the abolition of primary school fees in Africa, which Harding and Stasavage (2014) highlight as a policy change that can be clearly traced back to executive action because the outcome (not paying school fees) is not mediated in any way by other institutions or government agencies. By contrast, a policy outcome that is less easy to attribute to executive action is the provision of learning resources such as textbooks, responsibility for which tend to be decentralized to local government agencies. Such decentralization of decision-making reduces the degree of state capacity over a particular policy area – where state capacity here refers to the extent to which executive decisions translate to actual policy outcomes – in part by creating opportunities for corruption. For example, Reinikka and Svensson (2004) show that schools in Uganda received on average only 13% of the funds committed to them under a central government grant program, with the bulk being captured as rents by local officials and politicians.

Therefore if attributability varies across policies, the extent to which voters can use elections to hold the government accountable should be expected to vary in the same way. If citizens cannot attribute responsibility for an outcome to the government, there is little reason to think that this outcome will affect their vote choice. This recognition resonates with the literature on clarity of responsibility, especially the work of Powell and Whitten (1993), who note that in developed democracies voters’ ability to hold the government responsible for the performance of the economy will vary according to the particular political context. Indeed, the essence of the claim is very similar to that being made here, that whether voters will condition their electoral support on government performance depends on their ability to correctly attribute responsibility for the outcomes they care about. Where the claims differ is in why the ability to attribute responsibility might vary.
For the clarity of responsibility literature what matters is the extent to which the government can exert unified control over policymaking, such that performance evaluation will be less likely in countries where the political context gives greater influence to the opposition. In Africa’s strong presidential systems, governments’ control over outcomes depends less on the influence of the political opposition than on characteristics specific to particular policy areas, such as the decentralization of decision making, or the fragmentation of funding. Factors such as these can undermine state capacity, in the sense that decisions taken centrally may not translate directly to outcomes being implemented on the ground, due to the actions of officials at lower levels of government. The existence of multiple funding sources, such as donor agencies, can make it harder still for voters to correctly attribute responsibility for the outcomes they experience.

As a consequence, where low information and weak state capacity make it hard for voters to attribute outcomes to action, the ability of voters to effectively hold politicians accountable will be limited. In such contexts, political competition is often characterized by clientelism and ethnic voting. One explanation for this is that for politicians to make credible policy commitments to voters requires the provision of costly information about, amongst other things, political decision-making, and that a cheaper alternative is to use patron-client relationships instead of forming direct linkages with voters (Keefer and Vlaicu 2008). Information has also been linked to ethnicity, such that the prevalence of ethnic politics can be understood as a response to electoral competition in democracies with low levels of information, because ethnic categories provide costless signals to voters about which parties are likely to support their interests (Chandra 2004).

This matters because if electoral competition is based on clientelism and ethnicity, the accountability mechanism driving democracy’s developmental benefits may be undermined.\(^5\) Competitive elections generate incentives for politicians to broaden the provision of public goods because they allow citizens to hold politicians accountable. In political systems where clientelistic or ethnic ties dominate, however, voting is about demonstrating loyalty in return for private transfers. The accountability relationship may even be perverted by clientelism, with voters themselves being held

\(^5\)Foundational works concerning the importance of accountability for democracy’s benefits include Bates (1981), Bueno de Mesquita et al. (2001), Lake and Baum (2001).
accountable for their behavior by politicians and parties (Stokes 2005). As a result, public goods provision is lower in such systems, because politicians direct resources towards more easily targetable private goods instead of responding to programmatic accountability (Keefer and Vlaicu 2008, Hicken and Simmons 2008).

2.2 The African Context

This is particularly pertinent in sub-Saharan Africa, where there is a widespread impression that elections are dominated by vote-buying and ethnicity. This impression is not without foundation. Vote-buying is a very direct form of clientelism, which can be defined fairly generally as the contingent transfer of private goods in exchange for political support.\(^6\) Research into political competition in Africa has highlighted the existence of widespread clientelism, depicted variously as patronage, prebendalism, tribute, or straightforward vote-buying (Lemarchand 1988, Lewis 1998, van de Walle 2003, Bratton 2008, Kramon 2009). Experimental work suggests that voters in Africa are more responsive to clientelistic than to programmatic appeals (Wantchekon 2003), and that vote-buying increases turnout (Vicente 2010). At the same time, it has been widely recognized that voting in Africa is often based on ethno-regional identities (Posner 2005, van de Walle 2007, Mozaffar, Scarritt and Galaich 2003, Ishiyama 2012).\(^7\) As a result, the general perception presents a fairly pessimistic view of African elections, as little more than contests in corruption and ethnic loyalty.

But this is not the whole story; a smaller but growing body of work has noted other possible determinants of voting behavior in Africa, including urban/rural cleavages (Nugent 1999), and economic factors (Kimenyi and Romero 2008, Posner 2005). At the same time, researchers have begun to consider whether votes may be affected by evaluations of incumbent performance (Lindberg 2005, 2010, Young 2009a, Bratton, Bhavnani and Chen 2012). This paper contributes to such research by providing robust evidence that public goods do have an effect on vote shares. In addition, it builds upon this literature by recognizing that, because the ability of voters to attribute outcomes

\(^6\)For a more detailed discussion of clientelism see Hicken (2011).

\(^7\)In contrast, Young (2009b) provides evidence that although co-ethnicity is a very strong determinant of voter choice across Africa, electoral support for co-ethnics is not always guaranteed.
to political action varies across types of public goods, investigating whether citizens vote on the basis of programmatic accountability requires looking at goods for which it is actually possible for them to do so. Finding that changes to the provision of an unattributable good have no impact on votes may just mean that the goods in question provide no relevant information about politicians’ effort, on which voters can condition their electoral support. By contrast, if we find that changes to attributable goods have no impact on votes, we might infer that voters have chosen to ignore this information.

The first task is to identify public goods where outcomes are attributable. As I explain in the following section, this is true for roads in Ghana. Therefore I use an original panel dataset containing information on road conditions and election results at a very localized level throughout Ghana to provide robust, micro-level evidence that voters in Africa do care about public goods. While this dataset has many advantages, it is worth noting that it does not allow us to investigate any potential heterogeneity in the extent to which different types of voters are influenced by programmatic issues. It is possible, for example, that education and gender both affect the degree to which voters engage in performance evaluation at the polls. Similarly, as work by Resnick (2012) suggests, urban and rural voters may be influenced by programmatic issues in different ways. Finally, it is also possible that partisanship affects the influence of programmatic issues on voter choice. Future work should seek to investigate these possible sources of heterogeneity.\(^8\)

3 Road Maintenance in Democratic Ghana

3.1 Ghana’s Democracy

Ghana has held regular multiparty elections every four years since 1992. The president and parliament are elected concurrently, the former by direct popular vote in a two-round run-off system,

\(^8\)I am grateful to an anonymous reviewer for highlighting these possible sources of heterogeneity among African voters.
and the latter in 230 single-member constituencies using first-past-the-post.9 The presidency has
changed hands three times since 1992; Jerry Rawlings of the National Democratic Congress (NDC)
stepped down in 2000 at the end of his second term in office, and John Atta Mills, his replacement
as leader of the NDC, then lost to John Kufuor of the New Patriotic Party (NPP). Kufuor also
stepped down in 2008 after serving the constitutional limit of two terms, and his replacement as
leader of the NPP, Nana Akufo-Addo, lost to the NDC’s John Atta Mills in the 2008 election. Mills
died in 2012 and Vice President Mahama assumed the presidency. Ghana has a stable two-party
system, with the presidential candidates of the NPP and NDC having won at least 93% of the votes
between them in each of the past four elections.10

Although the 1992 parliamentary election was boycotted by opposition parties, elections since then
have been widely regarded as free and fair, and competitive.11 The clientelistic nature of political
competition has been highlighted in Ghana (Lindberg 2003), as has the strong ethno-regional basis
to political competition, with the NPP commonly viewed as the Ashanti or Akan party (the Ashanti
is a sub-group of the broader Akan group) and the NDC as that of the Ewe group (Fridy 2007).
However, while ethnic identification may explain voting patterns in the Ashanti and Volta regions
where these groups are dominant, it simplifies what is in reality a more complicated picture. Studies
of voting behavior have recognized an urban/rural cleavage in Ghana (Bawumia 1998, Nugent 1999),
and have also noted the influence of economic factors (Youde 2005). In addition, evidence from
public opinion data suggests some voters in Ghana may use elections to hold politicians accountable
for their performance (Lindberg 2005).

9 The number of constituencies was expanded to 275 for the 2012 elections. Details of the structure of electoral
administration are included in the appendix.
10 Ghanaian election results are available at www.africanelections.tripod.com.
3.2 Ghana’s Roads

The quality of roads is an important issue throughout Africa. Especially in largely agrarian societies, transport infrastructure can have a critical impact on poverty alleviation and development. As well as being dangerous, poor quality roads increase agricultural costs, which threatens food security, and high transport costs can undermine improvements to education and healthcare. These factors make roads a salient issue; in surveys carried out across 19 African countries between 2008 and 2009, 16% of respondents said that infrastructure and roads were one of the three most important problems facing their country. In Ghana specifically, infrastructure and roads were cited behind only unemployment, poverty, the economy, and water as the most important problem the government needed to address.

This analysis focuses on Ghana’s 13,367 km trunk road network, which consists of major roads connecting towns and cities. The Ghana Highways Authority (GHA) is responsible for the development and maintenance of the trunk road network. There is large variation in the quality of trunk roads, with surfaces ranging from asphaltic concrete to gravel, and their condition varies widely, as surfaces can subside, crack, and develop pot-holes. This variation significantly impacts upon the ease, speed, and safety of travel, and is highly visible to citizens in the course of their daily lives.

The process for maintaining Ghana’s trunk road network is highly centralized. Although the GHA has regional and district offices, all important road maintenance decisions are taken centrally. While minor ongoing maintenance happens throughout the road network and is managed at the regional level, major periodic maintenance and construction projects are all determined at the center. Each year the GHA’s regional directors send a list of roads that need attention to the Ministry of Roads and Highways. The Ministry sets a ceiling budget for the Maintenance Department at the GHA, which then allocates this budget based on need. Analysis of road maintenance outcomes suggests

12 On the positive impact of roads see deGrassi (2005) and Bryceson, Bradbury and Bradbury (2008). For somewhat contrary findings see Gachassin, Najman and Raballand (2010).
13 www.afrobarometer.org
14 Ghana also has urban roads (4,000km) and rural feeder roads (32,000km). Road network distances as of 2004, data provided by the Ghana Highways Authority.
15 The Ministry also provides emergency budgets to repair unexpected damage. Information on the process of road
that as well as being publicly available, these formal criteria determine the distribution of road
maintenance – analysing improvements to road conditions at the constituency level shows that
need, measured as the quality of roads in a given constituency in 2004, is the only significant
correlate of subsequent changes to road conditions in that constituency.

Results of this analysis are presented in Table 7 in section B.1 of the appendix. Importantly,
there is no significant correlation between the incumbent party’s vote share in 2004 and subsequent
changes to road conditions, which implies that road maintenance was not targeted to the incumbent’s core supporters. This analysis also shows that there is no significant correlation between road maintenance and the proportion of the population belonging to the Akan group, which rules out the possibility that the incumbent party targeted road maintenance to core supporters on an ethnic basis. Since competing theories of distributive politics suggest that patronage is more likely to be targeted at swing voters rather than core supporters, I also investigate whether there is a relationship between road maintenance and margin of victory in the 2004 election. Again though, I find no significant correlation between road maintenance and this measure of swing voters. Indeed, in all these analyses the only significant correlate of road maintenance is prior road quality. Therefore it is reasonable to assume that the distribution of road maintenance in Ghana is not clientelistic. Moreover, since road maintenance is not correlated with expected determinants of patronage distribution (either core or swing voters), it is also reasonable to assume that it is not correlated with targeted patronage. This latter point is important, because if road maintenance were correlated with targeted patronage we would not know whether any vote share change related to road maintenance were actually due to the road maintenance itself, or to the unobserved patronage.16

In addition, the fact that the decision-making process for road maintenance is so highly centralized means that changes to road conditions in Ghana can be attributed directly to the actions of the executive. This sets road maintenance apart from the provision of other public goods and services

maintenance budgetary allocations was collected during an interview with the Director of Road Maintenance at the GHA in Accra, in December 2010.

16I am grateful to an anonymous reviewer for highlighting this concern.
in Ghana, such as various education inputs, for which decision-making is decentralized and funding flows are fragmented. Although actual maintenance work is routinely undertaken by contractors, it is governed by a uniform performance-based contracting process, and subject to careful monitoring and control procedures with penalties for non-compliance, leaving little scope for variation in the quality of outcomes. Regional Tender Boards are responsible for maintenance contracts, but well-established bidding and monitoring procedures allow for very little variation across regions. This means the key factor determining road conditions is the allocation of funds at the ministerial level, so it is possible for voters to directly attribute changes in road conditions to executive actions.

Moreover, there is evidence that Ghanaians do just this. Newspaper reports during the 2004 Presidential election campaign provide examples of citizens directly crediting President Kufuor with improving road conditions. More explicit evidence comes from examples of citizens throughout the country protesting about the state of roads, often using the slogan, “No Road, No Vote”. Any doubts over which votes they are referring to are dispelled by other slogans seen at the same demonstrations, such as, “Mr. President our road our better Ghana”, “Be a father to us also”, and “Mr. President stop this terrifying deaths [sic]”. The picture this paints was summed up by an official at the Ministry of Roads, who said that, “the president can intervene ... people blame the president”. Citizens in Ghana draw direct lines of accountability from road conditions to executive actions, actively demanding better roads from the president, and threatening to withhold their votes if these demands are not met.

Candidates themselves also draw lines of accountability for voters by focusing on roads during election campaigns. During the 2004 campaign President Kufuor and Vice-President Mahama, and other government ministers, highlighted improvements to the road network, and claimed credit for

19 Reports recorded the use of this slogan by protestors in 2007 in Anlo Beach, Western Region, in 2008 in Bunkpurungu and Yendi, Northern Region, and in Kintampo North, Brong Ahafo Region, in 2010 in Bimbilla, Northern Region, and in 2011 in Aflao, Volta Region.
20 Interview with Principal Engineer, Department of Urban Roads, Accra, December 2010.
the government for these achievements. Likewise in 2008, President Kufuor urged Ghanaians to reflect on his government’s achievements with regards to roads, and the power of this campaign strategy was highlighted by the fact that the opposition party felt it necessary to counter it directly, by asking, “Is it Abena we are going to chop? (Will people be literally eating the roads?)”. Improvements to road conditions in Ghana are arguably attributable to executive actions. Therefore the question that remains is, do changes to road conditions influence votes?

Before proceeding it is important to consider the comparability of the Ghanaian case, and the extent to which findings about how roads affect votes therein may generalize. The preceding discussion highlighted two characteristics of Ghana that might matter here. First, Ghana is relatively stable and democratic compared to other African countries. It is possible that in such a context, where elections may be more meaningful and competitive than in less stable democracies, citizens may be more inclined to use their votes to hold the government accountable. In addition, greater systemic stability might mean citizens have more information about political effort, increasing their ability to hold politicians accountable.

However, Ghana is not an anomaly; other African countries are stable and democratic also. In 2011, Ghana was just one of eighteen countries (38% of the total) in sub-Saharan Africa coded as democratic by the Polity IV index, and one of fourteen (30%) coded as electoral democracies by Freedom House. In 2006 Ghana was one of 36 countries (80%) coded as having an executive elected via competitive multiparty elections by the World Bank’s Database of Political Institutions (Beck et al. 2001), and in 2000 Ghana was one of twenty (42%) coded as democratic by Cheibub and Gandhi (2004). Moreover, the strong ethnic basis to party competition in Ghana means that it represents a good test case, as we might expect little room for public goods to play a role in determining votes.

23 Of these eighteen countries coded as democratic by the Polity IV index, six achieved the same score as Ghana or higher on the Polity Index. Data from www.systemicpeace.org/polity/polity4.htm and www.freedomhouse.org.
Second, the preceding description of road maintenance illustrates a high degree of state capacity in Ghana with regards to roads. Since this is not true everywhere, we should not necessarily expect specific findings about the effect of roads to generalize to all African countries. Importantly though, this analysis focuses on road conditions in Ghana because they are attributable to executive action. While this may be true in other countries, different outcomes may also be attributable in other cases. Therefore, potentially more generalizable would be a finding that votes are affected by the provision of public goods that can be attributed to political action.

4 Empirical Strategy

I investigate the impact of roads on votes using an original panel dataset that combines electoral returns with detailed data on local road conditions throughout Ghana.

4.1 Election Results

To undertake the analysis at the lowest possible level of aggregation, I collected results from more than 3,000 polling stations for the 2004 and 2008 Presidential elections, from a sample of 700 electoral areas throughout the country. Resource constraints mean that archives of election results are not perfectly kept in Ghana, and in many districts the 2004 results have been lost or are incomplete. However, as the maps in Section 4.3 show, the coverage of the data is still broad. Having collated the returns from the 2004 and 2008 (first round) presidential elections for each polling station, I aggregated them to the electoral area level, in order to link them geographically.

\(^{24}\)A recent World Bank report highlighted the success of reforms to road sector institutions in Ghana, including the establishment of a road fund and road agency (the GHA), which meet “almost all of the best practice guidelines for road sector institutions” (Foster and Pushak 2011: 10). While not all African countries perform as well in this regard, the picture outside Ghana is far from bleak. Most countries have now established road funds and road agencies, and out of twenty countries surveyed by the World Bank in 2007, road funds in eight of them performed at least as well or better than that in Ghana (Foster and Briceno-Garmendia 2010).

\(^{25}\)Although constituency level results from the 2004 and 2008 elections are publicly available, aggregating votes across such large units raises serious issues of ecological inference. On ecological inference and aggregation bias see King, Rosen and Tanner (2004), and Achen (1995).

\(^{26}\)Analysis of the areas where data was unavailable shows no significant differences in the variables of interest between these areas and those from which data was collected. This analysis is reported in section B.3 of the appendix.
to data on road conditions.\footnote{This was necessary for geo-coding the data, because information about the precise locations of polling stations is not available.} Electoral areas are very localized units, containing on average five polling stations. This generated cross-temporal electoral data from a sample of 438 electoral areas (in 53 districts, across 9 regions). For each electoral area I investigate the determinants of Incumbent vote share change, defined as the difference in the share of the votes won by the NPP in the first rounds of the 2004 and 2008 presidential elections.\footnote{The share for the major opposition party (the NDC) is not equivalent to the inverse of the NPP share, because other smaller parties also compete. All of the results hold when the dependent variable is calculated as change in NDC vote share, although the signs are reversed.} More information about all of the data used in this paper is contained in the appendix.

4.2 Road Conditions

The GHA produces an annual road condition report, which provides detailed, systematic and objective information on the condition of the entire trunk road network, at the same period each year. Between March and April the GHA sends out teams of inspectors with vehicle-mounted electronic measurement devices to collect data on road surface distresses and roughness for each of the more than 2,400 road segments in the network. Distress is measured via a “Windshield” visual road condition survey. In this survey, raters travelling in a slow moving vehicle (at about 30km/h) observe the road surface for distresses, and determine their severity and extent based on clear guidelines set by the GHA. The raters also disembark from the vehicle and inspect distressed sections on foot in order to get more detailed measurements of slight distresses (e.g. cracks), which are not visible from the moving vehicle. Roughness is measured using a RIDEMATE device, installed in the vehicle, which measures the severity of bumpiness in a given road segment. These two measures are combined to produce an annual condition score (0 to 100) for each road segment. More details about the geo-coding of these road condition scores, along with plots showing that the scale is approximately continuous, are included in section C.2 of the appendix.

I use these condition scores to create two different measures of changes in road conditions between the elections. First, I constructed a measure of the change in the average condition of roads in the
precise vicinity of each electoral area. To do so, I geo-coded the condition data into a digital map of the trunk road network, and computed condition scores for each electoral area by averaging across all road segments that intersect a 5km buffer around the centroid of the electoral area. I then subtracted the mean 2004 condition score from the mean 2007 score to create the variable Average road condition change.29 In addition, to ensure that the results are not driven by the choice of 5km buffers, I vary the buffer sizes from 3km to 7km. The number of intersecting road segments varies across electoral areas, and drops as the size of the buffers is reduced. Since some buffers are not intersected by any road segments, smaller buffer sizes reduce the sample. I also constructed a measure of changes to the condition of the road segment that is closest to the centroid of each electoral area (Closest road condition change). This measure only contains information about one road segment for each electoral area, but it is a useful alternative because it does not necessitate dropping any electoral areas from the analysis.

Figure 1 presents summary statistics for changes to vote shares and road conditions (full summary statistics are contained in the appendix). Overall, the condition of roads in the sample improved, while vote shares for the incumbent decreased over the period. That the majority of changes to vote shares were fairly small reflects the high degree of stability in Ghanaian electoral politics. Since in a number of cases Incumbent vote share change was more extreme, I run tests to check that these outlying cases are not driving the results (see Section 5.2).

4.3 Sample

The maps in Figure 2 show the distribution of the sample. In (a) the shading demarks the ten administrative regions, and the pale grey lines mark constituency boundaries. In (b) constituencies are shaded according to population density, with more densely populated areas shaded darker.

29The 2008 data is not directly comparable with other years, because in 2008 the condition survey was carried out between May and June. This is problematic because the rainy season starts in May, and variations in climate throughout the country mean that electoral areas are not affected equally. Therefore I look instead at the change in condition scores between 2004 and 2007. When the models are estimated using the 2008 data the coefficient for the road conditions variable is positive but not always significant at standard levels. Since the rains have such variable impact on roads across Ghana, it is unclear how these results should be interpreted.

17
Note: Changes in presidential vote shares won by the incumbent party, the NPP, between the 2004 and 2008 elections, for the sample of 438 electoral areas. Also average changes in road condition scores between 2004 and 2007 across all road segments within a 5km buffer for the 280 electoral areas that have road segments within 5km, and changes to condition scores between 2004 and 2007 for the closest road segment to each of the 438 electoral areas in the sample.
Figure 2: Maps of Sample Distribution

(a) Sample Distribution, by Region

(b) Sample Distribution, by Population Density

Note: Dots represent sampled electoral areas, white circles are 5km buffers. Black lines are trunk roads. In (a) shading reflects regions, and grey lines mark constituency boundaries. In (b) shading reflects population density by constituency (darker is denser).
Although not perfectly representative, the sample is well distributed throughout the country, and provides good coverage of the population. From (a) we can see that the sample covers all but one of Ghana’s ten regions. There is no data from Upper West Region, because none of the polling station returns from the 2004 elections have survived there. Although coverage in the largest geographical region (Northern) appears fairly sparse, (b) shows that this reflects the very low population density therein. What (b) also highlights is the lack of data in the densely populated border area around Aflao, in the south-east corner of the country. In addition, the two maps show that the Ashanti Region (in the center of the country) is somewhat overrepresented in the sample. Overall though, these maps demonstrate a high degree of data coverage.

4.4 Estimation Strategy

Estimating a fixed effects model uses the temporal dimension in the data to control for unobserved time invariant factors at the electoral area level. Assuming that any unobserved confounding factors at the electoral area level are fixed over time, this approach identifies the effect of changes to road conditions on electoral support.\(^\text{30}\) In the absence of additional observable time varying factors at the electoral area level, the fixed effects model implies

\[
\text{votes}_{it} = \alpha_i + \beta \text{roads}_{it} + \lambda_t + \epsilon_{it}
\]

(1)

where \(\text{votes}_{it}\) is the vote share for the incumbent party in electoral area \(i\) at time \(t\), \(\alpha_i\) is a fixed effect that absorbs any time invariant factors for electoral area \(i\), \(\lambda_t\) is a year effect, \(\text{roads}_{it}\) denotes road conditions, and \(\beta\) is the causal effect of interest.

Rather than estimating all of the \(\alpha_i\) parameters, it is equivalent to difference over the two time periods and estimate the first difference equation

\(^{30}\)See Angrist and Pischke (2009) for a useful discussion of the benefits of fixed effects models for causal inference.
\[\Delta \text{votes}_{it} = \Delta \lambda_t + \beta \Delta \text{roads}_{it} + \Delta \epsilon_{it} \] (2)

where the Δ prefix denotes the change between the two time periods (e.g. $\Delta \text{votes}_{it} = \text{votes}_{i2008} - \text{votes}_{i2004}$). Doing so absorbs the electoral area fixed effects (α_i). The coefficient of interest is β, the effect of changes to road conditions (Δroads_{it}) on changes in vote shares (Δvotes_{it}), within electoral areas.

The endogeneity concern here is that, rather than voters responding to better roads by increasing their support for the incumbent, it could be that incumbents simply reward supporters by improving roads in areas where they win more votes. A major benefit of the fixed effects model is that by differencing over time periods, the focus is on trends in road improvements and vote shares within electoral areas, not levels across electoral areas. This reduces the endogeneity concern to a worry that road improvements are targeted to areas where support for the incumbent is known to be increasing between elections. This is less problematic, because it is extremely unlikely that the incumbent has good information about changing levels of support between elections, especially at a level as localized as electoral areas. In Ghana there are no opinion polls for the incumbent to base this kind of targeting on, and political parties have very limited local infrastructure outside of election campaigns. Moreover, although there are local district elections, these are non-partisan, so they provide no information about changes in support at the local level. Therefore the incumbent does not have the information necessary to target road maintenance in this way.\footnote{Even if the necessary information were available, it is unlikely that the incumbent could effectively target road maintenance at such a local level. Maintenance budgets are allocated by the GHA to district offices, which then oversee maintenance projects in their districts, making it difficult for the executive to target specific electoral areas. Nevertheless, if any such targeting were taking place, evidence of political business cycles suggests that it would most likely occur just prior to the elections (Schady 2000). Therefore ignoring the data from 2008, and looking instead at changes in road conditions between 2004 and 2007, further reduces the possibility that any relationship between roads and votes results from the targeting of maintenance projects to areas where support for the incumbent is increasing between elections.}

The model in equation (2) does not control for potentially confounding time-varying factors. For example, if wealth increased between 2004 and 2008, this might increase support for the incumbent.
At the same time, greater wealth might also increase citizens’ ability to lobby for improved roads, resulting in a spurious correlation between roads and vote shares. Without data on time-varying covariates at the electoral area level it is not possible to control for such factors explicitly. However, it is possible to control for any unobserved time-varying factors at the district level by including district-specific time trends ($\Delta \mu_j$) and estimating

$$\Delta \text{votes}_{ijt} = \Delta \lambda_t + \beta \Delta \text{roads}_{ijt} + \Delta \mu_j + \Delta \epsilon_{ijt}$$

where $\Delta \text{votes}_{ijt}$ is the vote share for the incumbent party in electoral area i in district j at time t. Electoral areas are nested within districts, so standard errors are clustered by district to counteract potential within-district correlation in the errors.

5 Results: Do Road Conditions Affect Votes?

5.1 Main Results

5.1.1 Average local road conditions

Table 1 reports results from estimates of equations (2) and (3), using five buffer sizes increasing in 1km increments from a radius of 3km up to 7km, with and without district-specific time trends. The dependent variable is Incumbent vote share change. It is clear that Average road condition change is positively and significantly related to changes in the share of the presidential vote won by the incumbent party. This effect holds across the range of buffer sizes, and for all but the smallest it is significant at standard levels, with and without district time trends. Statistical power diminishes when the size of the buffers is reduced, because fewer electoral areas have road segments intersecting the buffers, so the number of observations drops. For all of the buffer sizes, the magnitude of the
Table 1: Changes to Average Road Conditions and Incumbent Vote Shares

<table>
<thead>
<tr>
<th>Buffer Size</th>
<th>3km</th>
<th>4km</th>
<th>5km</th>
<th>6km</th>
<th>7km</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
</tr>
<tr>
<td>Average road condition change</td>
<td>0.040*** 0.002</td>
<td>0.048*** 0.017*</td>
<td>0.049*** 0.022**</td>
<td>0.046*** 0.021***</td>
<td>0.048*** 0.016**</td>
</tr>
<tr>
<td>District time trends</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Electoral areas</td>
<td>216</td>
<td>216</td>
<td>251</td>
<td>251</td>
<td>280</td>
</tr>
<tr>
<td>Districts</td>
<td>45</td>
<td>45</td>
<td>47</td>
<td>47</td>
<td>51</td>
</tr>
</tbody>
</table>

Note: Dependent variable is Incumbent vote share change. District-clustered standard errors in parentheses.
*p<0.1, **p<.05, ***p<.01.
coefficient on Average road condition change reduces when the estimates include time trends, which control for unobserved time-varying factors at the district level.

Although the model is very lean, the nature of the estimation provides confidence that the relationship between road conditions and vote shares is not confounded by unobserved time invariant factors at the electoral area level, or by unobserved time varying factors at the district level. Therefore these results provide strong support for the claim that changes to the average condition of local roads significantly affect vote shares. The question that follows is, how big is this effect?

Table 2: Magnitude of Effect of Change in Average Road Conditions

<table>
<thead>
<tr>
<th></th>
<th>Incumbent vote share change</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without time trends</td>
<td>1.433</td>
<td>0.485</td>
<td>2.382</td>
</tr>
<tr>
<td>With time trends</td>
<td>0.635</td>
<td>0.133</td>
<td>1.136</td>
</tr>
</tbody>
</table>

Note: Magnitude of Incumbent vote share change, for 1 standard deviation increase in Average road condition change (within 5km buffers). Lower and Upper are bounds of 95% confidence intervals.

Table 2 reports the magnitude of the effect of a one standard deviation increase in average road conditions within 5km of an electoral area. Without time trends, the implied effect is an increase in the incumbent party’s vote share of 1.4 percentage points, representing almost one quarter of a standard deviation. When time trends are included the effect is slightly more than 0.6 percentage points. Even so, this is substantial given the limited variation in vote shares over time – regressing incumbent vote shares on a set of electoral area dummies accounts for 93% of the variation in the data. Therefore, differencing over time within electoral areas leaves very little variation to be accounted for by changes to road conditions (for which there is a lot of variation – regressing road condition scores on electoral area dummies only accounts for 50% of the variation). The effects are even more substantial when we consider that the NPP’s presidential candidate Nana Akufo-Addo won 49.13% of the first round votes in the 2008 presidential election. Therefore these results suggest that had the NPP invested in only a little more than one additional standard deviation
improvement in road conditions across the country, they would have won the 2008 election in the first round.32 As it was, the election went to a run-off, which they lost.

Moreover, it is also worth considering the possibility that the effects of road maintenance on vote shares may be heterogeneous across electoral areas, and that road improvements are not uniformly distributed. This is important because it seems plausible that improvements to road conditions would have a larger effect on voter choice where those improvements are larger, and the bulk of improvements to road conditions are concentrated in these areas. Road conditions improved by 1 standard deviation or more (at least 29 points) in 28% of the electoral areas in the sample, but the observed improvements in these areas alone represent 72% of all of the observed improvements across the entire sample.

If we focus just on these electoral areas where the vast majority of road improvements took place, we see that the impact of road improvements on votes is markedly different than across the sample as a whole. First, looking simply at the mean change in incumbent vote shares, these shares fell much less in electoral areas where road conditions improved by at least 1 standard deviation than they did in electoral areas where road conditions improved by less than 1 standard deviation (by -2.67 percentage points as opposed to -4.24 percentage points, respectively). Furthermore, replicating the statistical analyses on this restricted sample returns a much larger coefficient on the road change variable; looking only at electoral areas where roads improved by at least 1 standard deviation, the implied effect of a 1 standard deviation improvement to road conditions (the minimum experienced by electoral areas in this sub-sample) is an increase in the incumbent’s vote share of 1.77 percentage points (or 3.19 percentage points if district time trends are omitted from the model). Looked at in this way, the effect is even more substantial. The implied effect of a 1 standard deviation improvement to road conditions in these areas equates to almost 50% of the average change in vote

32It is very difficult to estimate the precise cost of an additional standard deviation improvement in trunk road conditions throughout the country. In recent years Ghana has spent on average a total of 1.5% of GDP on roads, which is one of the highest amounts in West Africa (Foster and Pushak 2011). However, this amount covers all road expenditures across all three road sectors, with the majority going to urban and rural feeder roads, so the total spent on trunk road maintenance is much lower. Furthermore, it is a very small sum in comparison to other areas of public expenditure. For example, in 2011 Ghana spent 8.2% of GDP on education (data from the World Bank Development Indicators).
shares across the sample, and to almost one third of a standard deviation of the total change in the incumbent’s vote share.

5.1.2 Closest road conditions

Measuring road conditions using changes to the condition of the single closest road segment avoids dropping electoral areas. I use this variable to estimate equations (2) and (3), the results of which are presented in the first two columns of Table 3. The coefficient on Closest road condition change is positive, and significant at the 95% level when the time trends are omitted (column 1).

<table>
<thead>
<tr>
<th>Table 3: Changes to Closest Road Conditions and Incumbent Vote Shares</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>(1) (2) (3) (4)</td>
</tr>
<tr>
<td>Closest road condition change 0.030** 0.008 0.042*** 0.021**</td>
</tr>
<tr>
<td>(0.015) (0.007) (0.015) (0.009)</td>
</tr>
<tr>
<td>Closest road condition change -0.003 -0.003*</td>
</tr>
<tr>
<td>X Distance to closest road (0.002) (0.002)</td>
</tr>
<tr>
<td>District-specific time trends No Yes No Yes</td>
</tr>
<tr>
<td>Electoral areas 438 438 438 438</td>
</tr>
<tr>
<td>Districts 53 53 53 53</td>
</tr>
</tbody>
</table>

Note: Dependent variable is Incumbent vote share change. District-clustered standard errors in parentheses. *p<0.1, **p<.05, ***p<.01.

While this measure enables the inclusion of all the electoral areas for which election results were available, for some areas the closest road is not very close – for the most remote electoral areas in the sample, the closest road is as much as twenty-four kilometers away. Such wide variation in distance to the closest road raises the possibility of heterogeneous effects. The effect may vary with distance to the closest road, potentially reducing as this distance increases, either because individuals are not concerned about distant roads, or because they do not have good information about their condition. I investigate this possibility by estimating the equation

\[
\Delta votes_{ijt} = \Delta \lambda_t + \beta \Delta roads_{ijt} + \gamma(\Delta roads_{ijt} \ast distance_{ijt}) + \Delta \mu_j + \Delta \epsilon_{ijt}
\] (4)
where an interaction term $\Delta \text{roads}_{ijt} \ast \text{distance}_{ijt}$ has been added to equation (2), with distance_{ijt} equal to the distance from the centroid of the electoral area to the closest road segment.33

The results from estimating equation (4) are presented in columns (3) and (4) of Table 3. Accounting for distance, changes to the condition of the closest road significantly affect the incumbent’s vote share. While the interaction term is only weakly significant in one of the specifications, this coefficient does not tell the whole story. Figure 3 plots the effect of a one standard deviation change in the condition of the closest road on the change in the incumbent’s vote share, across different distances to the road.34

Panel (a) shows the effect without district-specific time trends, and panel (b) shows the effect when they are included. The magnitude of the effect of Closest road condition change diminishes with greater distance to that road. Without time trends the effect remains significant at the 95% level up to a distance of about four kilometers. When time trends are included, the effect is significant for roads within one kilometer. These results provide further support for the claim that changes to local road conditions have a significant effect on presidential vote shares in Ghana. Furthermore, it seems that distance matters – vote shares are significantly affected by changes to local roads.

5.2 Robustness

5.2.1 Controlling for Wealth

An alternative explanation for the results in Section 5.1 could be that vote shares are affected by wealth. If citizens become wealthier, they may reward the incumbent with greater electoral support. At the same time, greater wealth may increase their ability to lobby for improved roads. If this were the case, we might spuriously attribute a correlation between road conditions and vote shares to programmatic accountability. To control for this I include a time-varying measure of

33It is not necessary to include the Distance to closest road variable (distance_{ijt}) as a stem for the interaction, because this is already included in the fixed effects in equation (1), and differenced out in equations (2) and (3).

34On interaction effects see Brambor, Clark and Golder (2006).
Figure 3: Marginal Effect of Increase in Road Conditions, by Distance to Closest Road

Note: Dependent variable is Incumbent vote share change. Graphs show the marginal effect of a one standard deviation increase in the condition of the closest road segment to each electoral area, by the distance in meters from the centroid of the electoral area to the closest road segment. Panel (b) shows the effect when district-specific time trends were included, and panel (a) shows the effect without these time trends.
Table 4: Changes to Road Conditions and Incumbent Vote Shares - Controlling for Wealth

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average road condition</td>
<td>0.046**</td>
<td>0.024**</td>
<td>0.038***</td>
<td>0.024**</td>
<td>0.039**</td>
<td>0.024**</td>
</tr>
<tr>
<td>change (5km)</td>
<td>(0.017)</td>
<td>(0.009)</td>
<td>(0.014)</td>
<td>(0.009)</td>
<td>(0.016)</td>
<td>(0.009)</td>
</tr>
<tr>
<td>Wealth change</td>
<td>-2.129*</td>
<td>-0.038</td>
<td>-1.605</td>
<td>-0.425</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.161)</td>
<td>(0.184)</td>
<td>(1.179)</td>
<td>(0.254)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water change</td>
<td>0.002</td>
<td>0.003***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.0004)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity change</td>
<td>-2.212</td>
<td>1.869</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.145)</td>
<td>(1.696)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>District-specific time trends</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Electoral areas</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>Districts</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
<td>44</td>
</tr>
</tbody>
</table>

Note: Dependent variable is Incumbent vote share change. District-clustered standard errors in parentheses. *p<0.1, **p<.05, ***p<.01.

wealth, using data on household wealth from the DHS surveys.\(^{35}\)

The DHS surveys do not provide data over time for every electoral area in the sample, because a different sampling frame is drawn for each round of the survey, and not all electoral areas are covered in each round. To overcome this I average the wealth index data across clusters within Constituencies, thereby constructing a constituency level indicator of Wealth change.\(^{36}\) The DHS surveys also capture information on access to water and electricity, making it possible to control for constituency level measures of average changes in access to these utilities (Water change and Electricity change). The results are presented in Table 4.

Most importantly, the relationship between road conditions and vote shares is robust to the inclusion of the time-varying measure of wealth. This is true across all specifications. Although the coefficient for the Wealth change variable is negative, it is only weakly significant in one specification. Neither of the measures of changes in access to water or electricity are consistently significant.\(^{37}\)

\(^{35}\)This data measures household wealth through factor analysis of a variety of household assets.
\(^{36}\)The sample shrinks when this measure is included, because not all Constituencies are covered by both rounds of the surveys.
\(^{37}\)Clustering the standard errors by constituency instead of district has no significant impact on the results.
5.2.2 Outliers

The summary statistics in Figure 2 demonstrated that in a small number of cases changes to vote shares were fairly substantial. To check that the results are not driven by these extreme cases, I re-estimated the main findings using two techniques that deal with outliers. The first is robust regression using iteratively reweighted least squares, which down-weights outliers. The second is quantile regression, whereby coefficients are estimated by minimizing absolute deviations from the median rather than the mean, making them more resistant to outliers. The main findings all hold in both of these sets of estimates, results from which are contained in the appendix.

5.3 Non-Attributable Policies: Education Inputs and Vote Shares

If roads affect votes because citizens can attribute changes in road conditions to executive actions, then voting should not be influenced by policy outcomes that are not attributable in this way. In Ghana education inputs vary in the extent to which they can be attributed to executive action, so data on education inputs can be used to carry out a falsification test of the argument about attributability.

In Ghana the provision of some education inputs, including classrooms and textbooks, is determined by decentralized decision-making processes and fragmented funding flows, making it hard to attribute outcomes in these areas directly to the executive. Even if the amount of resources available locally is determined in part by central government transfers, resource allocation at the local level creates opportunities for corruption and “leakages”, such that outcomes do not truly reflect inputs from the center.38 Since responsibility for education in Ghana is divided between the central government and local authorities, some education inputs are attributable to executive actions, while others are not.39

38Reinikka and Svensson (2004) provide evidence of this in Uganda, where between 1991 and 1995 capture by local government officials and politicians meant that schools received only 13\% of allocated central government spending.

39The division of responsibility dates back to 1951, and has been repeatedly reinforced by legislation (Darvas and Krauss 2011).
More specifically, decentralization means that responsibility for classroom construction and the management of services such as water and sanitation lies at the district level. Funds for these inputs flow through the District Assemblies and District Education Offices from various central government offices, and from donors. Textbooks and other learning resources are provided both centrally by the Ministry of Education, and at the district level using donor funds. This decentralization of responsibility, and the fragmentation of funding sources, means that numbers of classrooms, textbooks and seats, and school services and facilities, should not be expected to affect votes because citizens cannot hold the executive directly accountable for providing them.

In contrast, the executive is directly responsible for supplying teachers and building new schools. Teachers in Ghana are hired, trained, deployed, and paid centrally, with no involvement at the district level. Likewise, the major investments required to fund new school construction are distributed centrally and are tightly controlled (Steffensen 2006). As a result, it is likely that citizens in Ghana can attribute pupil-teacher ratios and the number of schools directly to executive action. Therefore if voters do care about public services, we might reasonably expect these factors to affect presidential vote shares. Data from an annual schools census makes it possible to investigate these expectations. I use this data to estimate the first difference equation

\[
\Delta \text{votes}_{jt} = \Delta \lambda_t + \beta \Delta \text{roads}_{jt} + \gamma \Delta X_{jt} + \Delta \epsilon_{jt}
\] (5)

where \(\text{votes}_{jt}\) is the incumbent’s vote share in district \(j\), \(\text{roads}_{jt}\) reflects road conditions in district \(j\), and \(X_{jt}\) is a matrix of education inputs in district \(j\), which includes the numbers of Primary schools and Classrooms per school, the proportions of Schools with toilets and of Schools with drinking water, the numbers of Books per pupil and Seats per pupil, and the Pupil-teacher ratio. As in equation (2), the \(\Delta\) prefix denotes the change from 2004 to 2007/2008. Differencing over

\text{Reports from the 2004 presidential campaign suggest that the incumbent specifically tried to cultivate this, by reminding voters of new schools that the government had built (“Students Subject Parties to Hot Debate Ahead of December Polls”, Ghanaian Chronicle, October 6 2004; “Akuffo Addo Storms Keta-Somey”, Ghanaian Chronicle, November 23 2004).}
the two time periods estimates the coefficients of changes to road conditions and education inputs on changes in vote shares within districts. The Average road condition change, by district variable measures the change in the average condition of all road segments intersecting a district.

Table 5 presents results from four different estimates of Incumbent vote share change, by district. As expected, only outcomes that can be attributed to executive actions are significantly related to changes in vote shares. The results in column (1) demonstrate that the number of primary schools, an outcome tightly controlled by the central government, is significantly related to incumbent vote shares. By contrast, outcomes for which responsibility is diffused and funding is fragmented, such as the number of classrooms and the provision of drinking water and toilets, have no significant effect on vote shares (column 2).

This pattern is repeated for learning inputs (column 3); while less attributable inputs such as textbooks and seats have no effect on votes, that which is the responsibility of the central government (pupil-teacher ratios) is significantly related to vote shares. When the road condition variable is included (Column 4), the coefficient for pupil-teacher ratios remains significant, and that for the number of primary schools is almost significant at the 95% level (p=0.054). These results support the argument about attributability. Just like roads, education is important to voters in Ghana, but only education inputs that can be directly attributed to executive actions have any bearing on presidential vote shares.

6 Conclusion

Through competitive elections, democracy provides institutional structures for citizens to hold their governments accountable. But the presence of these institutions alone does not mean accountability will be realized, and the general expectation with regards to African elections is that it has not been. Rather, elections in Africa have been widely depicted as little more than exercises in vote-

41 Including all education inputs without the road condition variable returns almost identical results, except the coefficient for the Primary schools variable is significant at the 95% level.
Table 5: Education Inputs and Incumbent Vote Shares - District Level Data

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investments/Infrastructure:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary schools</td>
<td>0.096***</td>
<td>0.070*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.035)</td>
<td>(0.036)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classrooms per school</td>
<td>1.085</td>
<td>1.628</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.807)</td>
<td>(1.082)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Facilities/Services:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schools with toilets</td>
<td>-0.296</td>
<td>0.319</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.930)</td>
<td>(1.737)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>School with drinking water</td>
<td>6.060*</td>
<td>2.931</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(3.291)</td>
<td>(3.000)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Learning Inputs:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pupil-teacher ratio</td>
<td>-0.266***</td>
<td>-0.292***</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.089)</td>
<td>(0.073)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Books per pupil</td>
<td>0.443</td>
<td>-0.473</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(1.626)</td>
<td>(1.691)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seats per pupil</td>
<td>2.979</td>
<td>2.089</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.784)</td>
<td>(2.756)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roads:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average road condition change, by district</td>
<td>0.069***</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>109</td>
<td>109</td>
<td>109</td>
<td>109</td>
</tr>
</tbody>
</table>

Note: Dependent variable is Incumbent vote share change, by district. Robust standard errors in parentheses. *p < 0.1; **p < 0.05; ***p < 0.01.
buying and ethnic mobilization. While this impression is not without foundation, these practices are not the whole story. This paper presents robust, micro-level evidence that voters in Africa do use elections to hold their governments accountable; evidence that road conditions affect vote shares in Ghana strengthens the small but burgeoning body of scholarship which suggests elections in Africa are more than contests in corruption and ethnic loyalties.

In order to advance our understanding of electoral competition in Africa, and in low information contexts more generally, it is important to recognize that attribution matters. The evidence presented here concerns a single good (roads) in a single country (Ghana). While roads may indeed have similar effects elsewhere, this should only be expected in cases where, like Ghana, road conditions can be attributed to political action. As the analysis of education inputs demonstrates, voters in Ghana only condition their support on attributable outcomes; in other countries the range of attributable outcomes may be different. Finally therefore, this research highlights the fact that any conclusions we make about electoral competition may be sensitive to the outcomes we choose to investigate. Although voters in Africa may care about a wide array of public goods, in a low information environment the range of outcomes that can be attributed to political action is limited. This requires the researcher to think carefully about the particular context, and the nature of public goods under investigation.
Appendix

A Summary Statistics

Table 6: Summary Statistics

<table>
<thead>
<tr>
<th></th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min.</th>
<th>Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electoral Area Level Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependent Variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incumbent vote share change</td>
<td>438</td>
<td>-4.006</td>
<td>6.298</td>
<td>-30.692</td>
<td>35.825</td>
</tr>
<tr>
<td>Independent Variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average road condition change (3km)</td>
<td>216</td>
<td>12.443</td>
<td>30.388</td>
<td>-59</td>
<td>95</td>
</tr>
<tr>
<td>Average road condition change (4km)</td>
<td>251</td>
<td>12.941</td>
<td>29.923</td>
<td>-59</td>
<td>95</td>
</tr>
<tr>
<td>Average road condition change (5km)</td>
<td>280</td>
<td>12.433</td>
<td>29.008</td>
<td>-59</td>
<td>95</td>
</tr>
<tr>
<td>Average road condition change (6km)</td>
<td>313</td>
<td>12.471</td>
<td>28.183</td>
<td>-59</td>
<td>95</td>
</tr>
<tr>
<td>Average road condition change (7km)</td>
<td>344</td>
<td>12.702</td>
<td>28.971</td>
<td>-59</td>
<td>95</td>
</tr>
<tr>
<td>Closest road condition change</td>
<td>438</td>
<td>12.011</td>
<td>33.3</td>
<td>-96</td>
<td>97</td>
</tr>
<tr>
<td>Constituency Level Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wealth change</td>
<td>256</td>
<td>-0.207</td>
<td>0.631</td>
<td>-1.834</td>
<td>1.002</td>
</tr>
<tr>
<td>Water change</td>
<td>256</td>
<td>-158.63</td>
<td>246.81</td>
<td>-18.03</td>
<td>988.11</td>
</tr>
<tr>
<td>Electricity change</td>
<td>256</td>
<td>0.040</td>
<td>0.284</td>
<td>-0.654</td>
<td>0.937</td>
</tr>
<tr>
<td>District Level Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dependent Variable:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Independent Variables:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary schools</td>
<td>109</td>
<td>12.376</td>
<td>17.747</td>
<td>-44</td>
<td>88</td>
</tr>
<tr>
<td>Classrooms per school</td>
<td>109</td>
<td>0.628</td>
<td>0.697</td>
<td>-0.811</td>
<td>5.029</td>
</tr>
<tr>
<td>Schools with toilets</td>
<td>109</td>
<td>-0.094</td>
<td>0.279</td>
<td>-0.651</td>
<td>0.777</td>
</tr>
<tr>
<td>School with drinking water</td>
<td>109</td>
<td>0.252</td>
<td>0.215</td>
<td>-0.216</td>
<td>0.779</td>
</tr>
<tr>
<td>Pupil-teacher ratio</td>
<td>109</td>
<td>-1.958</td>
<td>8.709</td>
<td>-48.813</td>
<td>7.887</td>
</tr>
<tr>
<td>Books per pupil</td>
<td>109</td>
<td>0.397</td>
<td>0.321</td>
<td>-0.699</td>
<td>1.818</td>
</tr>
<tr>
<td>Seats per pupil</td>
<td>109</td>
<td>-0.0004</td>
<td>0.219</td>
<td>-0.7</td>
<td>1.005</td>
</tr>
<tr>
<td>Average road condition change, by district</td>
<td>109</td>
<td>9.670</td>
<td>21.769</td>
<td>-96</td>
<td>77.75</td>
</tr>
</tbody>
</table>
B Further Results

B.1 Distribution of Road Maintenance

Table 7 reports results from constituency and district level estimates of the distribution of road maintenance in Ghana between 2004 and 2007. The dependent variable is the average change in road condition scores across all roads within a constituency or district between 2004 and 2007. The explanatory variables are the average condition scores in 2004, the share of the vote won by the incumbent party (the NPP) in 2004, the margin of victory in 2004 (calculated as the difference in vote shares between the top two vote-winning parties in each constituency), and the proportion of the population in each district belonging to the Akan group, as reported in the 2000 Ghanaian Population and Housing Census. Estimates including the share of the population belonging to the Akan group are run at the district level because the census data is only available by district, not by constituency. Standard errors are clustered by region.

Table 7: Estimates of Changes to Road Condition Scores

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average road condition, 2004</td>
<td>-0.427**</td>
<td>-0.436***</td>
<td>-0.441**</td>
<td>-0.438***</td>
<td>-0.758***</td>
<td>-0.692***</td>
</tr>
<tr>
<td></td>
<td>(0.161)</td>
<td>(0.130)</td>
<td>(0.147)</td>
<td>(0.124)</td>
<td>(0.132)</td>
<td>(0.145)</td>
</tr>
<tr>
<td>Incumbent vote share, 2004</td>
<td>-0.012</td>
<td>-0.095</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.108)</td>
<td>(0.153)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Margin of victory, 2004</td>
<td></td>
<td></td>
<td>0.090</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(0.087)</td>
<td>(0.109)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akan % of population</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.188</td>
<td>12.675</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(5.195)</td>
<td>(7.214)</td>
</tr>
<tr>
<td>Region fixed effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Constituencies</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td>230</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Districts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

Note: Dependent variable is change in average road conditions between 2004 and 2007. Standard errors in parentheses, clustered by region. *p < 0.1; **p < 0.05; ***p < 0.01.

Different theories of distributive politics suggest that patronage is more likely to be targeted at core or swing voters. To rule out any correlation between road improvements and patronage targeted
to core supporters, I use constituency level data to investigate whether changes to road conditions are correlated with the share of the vote won by the incumbent in 2004. If road improvements were related to patronage we would expect to see a positive correlation with the incumbents 2004 vote share, but the results show no statistically significant relationship between these two variables. In addition, since ethnicity is widely recognized as an important determinant of voter support in Ghana, this represents a possible alternative measure of core supporters. Therefore I use the proportion of the local population belonging to the Akan group, which is widely viewed as the incumbent party’s ethnic stronghold, as another measure of core supporters. As the results in Table 7 show, there is no significant relationship between road improvements and core supporters when measured in this way either.

In addition, because alternative theories suggest that patronage is more likely to be targeted at swing voters, I also look at whether road improvements are correlated with the margin of victory in 2004. In this instance, if road improvements were related to patronage we should expect to see a negative correlation between changes to road conditions and the margin of victory, because more patronage should flow to areas where this margin is smaller. However, as with the measures of core supporters, I again find no significant relationship between these variables. Instead, in all of these estimates the only significant correlate of changes to road conditions is the prior condition of the roads, which provides further support for the claim that the distribution of resources for the maintenance of trunk roads in Ghana is programmatic. Therefore the evidence suggests that road quality improvements are not correlated with patronage, at least insofar as how we would expect patronage to be distributed, given theoretical work in this area.

B.2 Controlling for Outliers

Table 8 reports results from first difference estimates of Incumbent vote share change, using robust and quantile regression techniques. As discussed in Section 5.2, these estimates are resistant to the effects of outliers. Robust regression uses iteratively reweighted least squares, which down-weights outliers, thereby ensuring that they do not drive the results. Quantile regression estimates
coefficients by minimizing absolute deviations from the median, which as a measure of central
tendency is more resistant to outliers than the mean. The explanatory variable is Average road
condition change within a 5km radius of the electoral area. Columns (1) and (2) contain the results
for the robust regressions, and columns (3) and (4) contain the results for the quantile regressions.
The coefficient on the Average road condition change variable is significant at standard levels across
all specifications.

| Table 8: Robust and Quantile Regression Estimates of Changes to Incumbent Vote Shares |
|---------------------------------|----------------|----------------|----------------|
| | Robust Regression | Quantile Regression |
| | (1) | (2) | (3) | (4) |
| Average road condition change (5km) | 0.032*** | 0.016* | 0.036*** | 0.022** |
| | (0.007) | (0.009) | (0.008) | (0.011) |
| District-specific time trends No | Yes | No | Yes |
| Electoral areas 280 | 280 | 280 | 280 |
| Districts 51 | 51 | 51 | 51 |

Note: Dependent variable is Incumbent vote share change. Standard errors in parentheses.
*p < 0.1; **p < 0.05; ***p < 0.01.

B.3 Analysis of Missing Data

Table 9 shows balance statistics for the variables of interest across constituencies included in the
sample where election results were and were not available at the polling station level. This analysis
is undertaken at the constituency level so that we can compare changes in vote shares across areas
where election results were and were not available at the polling station level. Importantly, the
results in Table 9 show that for the key variables of interest – changes in road conditions and
incumbent vote shares – there are no significant differences across constituencies where election
results were and were not available at the polling station level. There is also no significant difference
in the margin of victory in 2004 across constituencies where election results were and were not
available.

The only observable characteristic for which there is a significant difference across constituencies
where election results were and were not available is for the incumbent’s vote share in 2004, which
Table 9: Balance Statistics For Constituencies With and Without Missing Data

<table>
<thead>
<tr>
<th></th>
<th>No Missing</th>
<th>Missing</th>
<th>Difference</th>
<th>T statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean road condition score, 2004</td>
<td>55.80</td>
<td>56.23</td>
<td>-0.43</td>
<td>-0.09</td>
</tr>
<tr>
<td>Mean road condition change, 2004-07</td>
<td>7.37</td>
<td>11.72</td>
<td>-4.35</td>
<td>-0.99</td>
</tr>
<tr>
<td>Incumbent vote %, 2004</td>
<td>57.80</td>
<td>46.69</td>
<td>11.11</td>
<td>3.18</td>
</tr>
<tr>
<td>Incumbent vote %, 2004 (w/o Ashanti)</td>
<td>46.77</td>
<td>46.21</td>
<td>0.56</td>
<td>0.15</td>
</tr>
<tr>
<td>Margin of victory, 2004</td>
<td>36.79</td>
<td>32.88</td>
<td>3.91</td>
<td>1.02</td>
</tr>
<tr>
<td>Incumbent vote % change, 2004-08</td>
<td>-4.19</td>
<td>-2.75</td>
<td>-1.12</td>
<td>-1.28</td>
</tr>
<tr>
<td>Constituencies</td>
<td>65</td>
<td>71</td>
<td>136</td>
<td>136</td>
</tr>
</tbody>
</table>

Note: T statistics from two-sample t tests with equal variances.

was higher in areas for which there was no missing data. This difference is driven by the exceptionally high yield of data in the Ashanti Region, the stronghold of the incumbent NPP party, where election results at the polling station level were available for 24 of the 25 constituencies in the sample. Data availability averaged around 50% across the remaining regions, apart from in Upper West, where none of the 2004 election results were available at the polling station level. As Table 9 demonstrates, if Ashanti region is omitted there is no longer a significant difference in incumbent vote share across constituencies where election results were and were not available at the polling station level. This would be a concern if there were some reason to think that the propensity of voters to hold the incumbent accountable for road conditions were greater in areas where the incumbent’s prior share of the vote were higher. Although I can think of no plausible reason why this should be the case, the main findings reported in the paper are substantively unaffected when the Ashanti region is omitted from the analysis (although doing so reduces statistical power).

C Data Appendix

C.1 Election Results

As Figure 4 illustrates, elections in Ghana are administered via a nested structure. Ballots are cast and counted at Polling Stations, which are nested within electoral areas for administrative
purposes. The counted results are taken to Constituency Collation Centers, and once collated the constituency results are sent to the relevant District Electoral Officers for onward transmission to the Regional Offices of the Electoral Commission. The Regional Offices then communicate the results to the Commission’s headquarters in Accra.

Figure 4: Organization of Electoral Administration in Ghana

Note: Elections in Ghana are administered via a nested structure, whereby each voter casts a ballot at one of the 21,000 polling stations, which are nested within 4,462 electoral areas (EAs), themselves nested within the 230 constituencies. The constituencies are gathered within 156 administrative districts, grouped within the country’s ten regions. All of these are under the authority of the Electoral Commission’s headquarters, based in Accra.

Results from the 2004 and 2008 Ghanaian Presidential elections were collected in person from various offices of the Electoral Commission throughout Ghana. The polling station level results for the 2008 elections are held centrally at the head office of the Electoral Commission in Accra, so it was possible to collect these from there. Since the 2004 results were collated at the district level, with just the aggregated constituency level results being sent to the head office, it was necessary to
travel to each of the districts in the sample, to collect the results in person. While a few District Officers had electronic versions of the polling station results, most of the results were kept only in paper format. Where this was the case, I took digital photographs of the results.

My analysis is based on polling station level data from a sample of electoral areas, because legal issues surrounding the release of the 2008 polling station results meant that the Electoral Commission was unwilling to release complete data for any constituency. Furthermore, collecting the 2004 returns from all 156 districts was not feasible. Therefore I drew up a pseudo-random sample of 700 electoral areas throughout the country, for which the Electoral Commission agreed that I could collect data. It is important to note that I drew up this sample myself, it was not dictated to me by the Electoral Commission. I am very grateful to them for agreeing to let me collect this data, and assisting me so generously in doing so. In an attempt to achieve a nationally representative sample, I made use of the sampling frame from the 2003 Demographic and Health Survey (DHS), which is itself a nationally representative household survey. To do this I used the GPS coordinates for the clusters sampled by the DHS to locate each cluster in an electoral area, which gave me a sample of 350 electoral areas. I then boosted this sample by randomly selecting additional electoral areas from each of the constituencies represented in the DHS sample, equal to double the number of electoral areas already selected from each constituency, giving me a final sample of 700 electoral areas.

In many districts the 2004 results have been lost or are incomplete, meaning that not all of the 2004 data was available (no data at all was available from Upper West Region). The polling station is the smallest unit, but there is no spatial data with which to geographically locate polling stations with sufficient precision, which is necessary in order to link them to data concerning local road conditions. The record of administrative units available from the Ghanaian Electoral Commission (EC) lists the localities that are contained in each electoral area. Using this list I located the electoral areas geographically, by matching them to a spatial database of 20,500 towns in Ghana (I am grateful to the Center for Remote Sensing and Geographic Information Services (CERSGIS) at the University of Ghana, Legon, for generously providing this database). After identifying all
of the towns that could be matched to a particular electoral area, I located the electoral area at their centroid. It was not possible to locate all of the electoral areas in the sample with confidence, meaning that some drop out of the sample. This left me with a dataset containing election results over time from 438 electoral areas (in 53 districts, across 9 regions).

C.2 Road Conditions

The maintenance and development of Ghana’s trunk road network is managed by the Ghana Highways Authority (GHA), which carries out an annual road condition survey of the entire trunk road network. Of the roads that are not part of the trunk road network, those within designated metropolitan areas are classified as urban roads, and those outside these designated areas are rural feeder roads. These are managed by the Department of Urban Roads and the Department of Rural Feeder Roads, respectively. The trunk road network consists of more than 2,400 segments, and between March and April of each year every segment is rated for distress and roughness. Distress is measured via a “Windshield” visual road condition survey. In this survey, raters travelling in a slow moving vehicle (at about 30km/h) observe the road surface for distresses, and determine their severity and extent based on guidelines set by the GHA. The raters also disembark from the vehicle and inspect distressed sections on foot in order to get more detailed measurements of slight distresses (e.g. cracks), which are not visible from the moving vehicle. Roughness is measured using a RIDEMATE device, installed in a vehicle, which measures the severity of bumpiness in a given road segment.

I geo-coded the annual data on road conditions into a digital map of the trunk road network, giving measures of changes to road conditions over time, throughout the country. I then linked this to election results for the sampled electoral areas by constructing 5km buffers around the centroid of each electoral area, and then taking the average of the condition scores across all segments intersecting each electoral area. The 2008 survey was carried out in May and June, during the rainy season, which creates problems of comparability with other years. Therefore the analysis focuses on changes in road conditions between 2004 and 2007. Figure 5 presents plots of the distribution of
road condition scores in 2004 and 2007, and of the change in condition scores between these years.

Figure 5: Distribution of Road Condition Scores

Note: Graphs show the distribution of road condition scores. Panel (a) shows the scores in 2004, panel (b) shows the scores in 2007, and panel (c) shows the change in condition scores between 2004 and 2007.

C.3 Demographic and Health Survey Data

The estimates in Section 5.2 use household wealth data from the 2003 and 2008 DHS surveys. The DHS uses a standard Household Schedule survey instrument, which is available at www.measuredhs.com/aboutsurveys/dhs/questionnaires.cfm. The DHS surveys contain an index of household wealth
that is constructed using factor analysis of responses to questions regarding ownership of a variety of household assets. Since the DHS uses a nationally representative sample, not all electoral areas are covered in the data, and even fewer are covered in both the 2003 and 2008 DHS datasets. Therefore in order to broaden the coverage of the data as far as possible, I constructed constituency level measures of wealth by averaging the DHS data across the sample clusters within each constituency.

C.4 School Census Data

The data on education inputs used in Section 5.3 comes from the annual schools census carried out by the Ministry of Education. District level data from 2001 to the present can be downloaded from www.moess.gov.gh/emis.html. The census collects data and information on number of institutions, enrollment, teachers, classroom, textbooks and examination results, at the Basic, Secondary and Higher education levels, which is comparable over time.
References

